Questions

Q1.

A student investigated the neutralisation of acids by measuring the temperature changes when alkalis were added to acids of known concentrations.

He used this apparatus to add different volumes of sodium hydroxide solution to a fixed volume of dilute nitric acid.

He used this method.

• measure the temperature of 25.0 cm³ of the acid in the polystyrene cup

add the sodium hydroxide solution in 5.0 cm³ portions until a total of 30.0 cm³ has been added
 (a) State two properties of the sodium hydroxide solution that should be kept constant for each 5.0 cm³ portion.

1 2

(b) The diagram shows the thermometer readings in one experiment.

Write down the thermometer readings and calculate the temperature change.

(2)

temperature after adding alkali	°C
temperature before adding alkali°	С
temperature change	°C

(c) The student carried out the experiment three times.

The table shows his results.

Volume of alkali	1	Temperature in °	c
added in cm ³	experiment 1	experiment 2	experiment 3
0.0	17.4	16.6	15.9
5.0	18.5	21.0	18.0
10.0	19.6	24.5	20.0
15.0	20.5	23.6	22.2
20.0	21.4	22.7	23.6
25.0	22.5	21.4	22.8
30.0	23.4	20.5	22.0

The teacher said that only the results for experiment 3 showed the expected increase and decrease in temperature.

- (i) Why was there no temperature decrease in experiment 1?
- A The alkali was added too quickly
- **B** The starting temperature of the acid was too high
- **C** The acid concentration was half what it should have been
- D The volume of acid used was 50.0 cm³ instead of 25.0 cm³
- (ii) Why were the temperature increases in experiment 2 much greater than expected?
- (1)

(1)

- A The starting temperature of the acid was too high
- **B** The acid concentration was double what it should have been
- C The volume of acid used was 50.0 cm³ instead of 25.0 cm³
- **D** The alkali was added in 10.0 cm³ portions but were recorded as 5.0 cm³ portions
- (d) Plot the results of experiment 3 on the grid.

Draw a straight line of best fit through the first four points, and another straight line of best fit through the last three points. Make sure that the two lines cross.

(4)

(e) The point where the lines cross indicates the volume of alkali added to exactly neutralise the acid and also the maximum temperature reached.

Record these values.
(2)
volume of alkali...... cm³
maximum temperature......°C

(f) Another student used sulfuric acid instead of nitric acid in her experiments. She started with 25.0 cm³ of sulfuric acid of concentration 0.650 mol/dm³.

She added 0.500 mol/dm³ sodium hydroxide solution until the acid was completely neutralised.

The equation for this reaction is

$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

(i) Calculate the amount, in moles, of sulfuric acid used.

(2)

amount = mol

(ii) Calculate the amount, in moles, of sodium hydroxide needed to neutralise this amount of sulfuric acid.

amount = mol

(iii) Calculate the volume, in cm³, of sodium hydroxide solution needed to neutralise this amount of sulfuric acid.

(2)

volume = cm³

(Total for Question = 18 marks)

A student uses this apparatus to find the increase in temperature of water when methanol, CH₃OH, is burned.

- (a) There are several reasons why the increase in temperature is less than expected.
 - (i) One reason is the incomplete combustion of methanol to form only carbon monoxide and water. Write the chemical equation for this incomplete combustion.

(ii) State another reason why the increase in temperature is less than expected.

.....

(b) The student records these results.

mass of burner and methanol before combustion	84.7 g
mass of burner and methanol after combustion	83.2 g
mass of water	125 g
temperature of water at start	22 °C
temperature of water at end	58 °C

(i) Calculate the heat energy change (Q), in joules, in this experiment using the expression

$$Q = m \times 4.2 \times \Delta T$$

where *m* is the mass of water in grams and ΔT represents the increase in temperature.

(2)

(2)

(1)

(ii) The relative molecular mass of methanol is 32
 Use this information and your value for *Q* to calculate the molar enthalpy change, Δ*H*, for the combustion of methanol.
 Give your answer in kJ/mol.

(4)

Q2.

 $\Delta H = \dots kJ/mol$

(iii) The student draws an energy level diagram for the complete combustion of methanol.

energy	carbon dioxide and water methanol	
Identify the two mistakes in his diagram	י ו.	(2)
1		
2		

(c) The student is given this table of average (mean) bond energies.

Bond	C—H	С—О	0—н	0=0	<mark>C≕</mark> O
Average bond energy in kJ/mol	412	360	463	<mark>4</mark> 96	743

The equation for the complete combustion of methanol is

H H—C—O—H + 1.5 0≡O → 0≡C≡O + 2H—O—H L

Use this equation and the information in the table to calculate another value for the molar enthalpy change, ΔH , for the combustion of methanol.

(4)

 $\Delta H = \dots kJ/mol$

(Total for question = 15 marks)

A student does some experiments to find the heat energy released when natural gas burns. She uses this apparatus.

(a) The diagram shows the thermometer readings in one of her experiments.

Use these readings to complete the table, entering all values to the nearest 0.1 °C.

temperature of water at start in °C	
temperature of water at end in °C	
temperature change in °C	

(b) The student repeats the experiment three times.

The table shows her results.

Experiment	Volume of gas burned in cm ³	Temperature rise of water in °C
1	1450	34.8
2	1875	41.2
3	1620	37.7

(i) Calculate the amount, in moles, at room temperature and pressure, of methane burned in experiment 1.

Assume that natural gas contains only methane.

Q3.

heat energy change =J

(iv) The student uses the results from experiment 3 to calculate the molar enthalpy change, in kJ/mol, for the combustion of methane.

She compares her value with the value in a data book.

student's value	$\Delta H = -510 \text{ kJ/mol}$
data book value	$\Delta H = -890 \text{ kJ/mol}$

Which is the best explanation for the large difference between these two values?

- A natural gas contains other gases that release heat energy when burned
- **B** not all of the heat energy is transferred to the water
- **C** some of the water evaporates during the experiment
- **D** the student measures the gas by volume instead of by mass

(c) The student uses a table of average bond energies to calculate another value for the molar enthalpy of combustion of methane.

Bond	C—H	0=0	C= 0	H—O
Average bond energy in kJ/mol	412	496	743	<mark>4</mark> 63

(2)

(1)

The equation for the combustion can be shown using displayed formulae.

```
\begin{array}{c} H \\ H \\ H \\ -C \\ H \\ H \end{array} + 20 = 0 \rightarrow 0 = C = 0 + 2H \\ -O \\ -H \\ H \end{array}
```

(i) Use values from the table to calculate the energy taken in when the bonds in the reactants are broken.

(2)

energy taken in = kJ

(ii) Use values from the table to calculate the energy given out when the bonds in the products are formed.

(2)

energy given out = kJ

(iii) Use your answers to (i) and (ii) to calculate the molar enthalpy change for the combustion of methane.

(1)

molar enthalpy change = kJ/mol

(Total for question = 15 marks)

<u>Mark Scheme</u>

Q1.

numb	ion er		Answer	Notes	Marks
				to the second se	
a		M1 M2	concentration temperature / same temperature as acid	Ignore from the same bottle	1
				Accept in either order Ignore references to volume	
Ь		M1	19.4	Award 1 for both temperatures	1
v		M2	16.9	correct but in wrong order	1
		M3	(+)2.5	CQ on temperatures recorded	1
				Penalise negative sign	
с	i		cross in box D (The volume of acid used was 50.0 cm ³ instead of 25.0 cm ³)		1
	ii		cross in box D (The alkali was added in 10.0 cm ³ portions but were recorded as 5.0 cm ³ portions)		1
d		M1 M2	all points plotted correctly to nearest gridline	Deduct 1 for each error If points not visible beneath line, assume them to be on the line	2
		M3	straight line of best fit through first 4 points	Lines must be drawn with a ruler	1
		M4	<u>straight</u> line of best fit through last 3 points	ECF on incorrectly plotted points	1
			250	If first line drawn to (23.6,20.0), do not award M3 If lines do not cross or are joined by curve or straightline, only one of M3 and M4 can be awarded	
			Temporture 10 °C 20.0 15.0 0 10.0 20.0		
			Volume of alkali in cm ¹		
e		MI	cross	gridline to min 1 dp	•
		M2	maximum temperature CQ on where lines cross	Accept answer to nearest gridline to min 1 dp	1
				Penalise missing dp once only If both values correct but in wrong order, award 1/2 0/2 if lines do not cross	
			0.(500.005		
t	1	M1 M2	0.050 × 0.025 0.01625 / 0.0163	16.25 scores 1/2 Accept 0.016 and 0.0162	1
	44	M1	0.0325	(O on fi	1
		mi	0.0323		
	iii	M1	0.0325 × 1000 0.500	CQ on tíi	1
				missing, then award M2 by ECF Penalise failure to use 1000 once only in i and iii Do not penalise rounding of intermediate answers and consequent final answer eg 65.2 If final answer obtained by use of $\underline{V_{M1}} = \underline{V_{2M2}}$	•
				both marks may be awarded in iii	
тот	AL				18

Question number	Answer	Notes	Marks
(a)(i)	$CH_3OH + O_2 \rightarrow CO + 2H_2O$	ACCEPT multiples and fractions	2
	M1 all formulae correct M2 correctly balanced	M2 DEP on M1	
(ii)	thermal energy/heat (energy) lost to the surroundings/environment	ACCEPT lost to atmosphere/beaker/thermometer	1
		ACCEPT evaporation of water/methanol	
(b)(i)	M1 (Q =) 125 × 4.2 × 36		2
	M2 = 18900 (J) /19000 (J)	ACCEPT answer in kJ if unit included Correct final answer with no working scores 2 ALLOW one mark for 1.5 x 4.2 x 36 = 226.8 ALLOW one mark for 126.5 x 4.2 x 36 = 19126.8	
(ii)	M1 mass[CH₃OH] = 84.7 – 83.2 OR 1.5 (g)		4
	M2 n[CH ₃ OH] = 1.5 ÷ 32 OR 0.046875 (mol)	ACCEPT any number of sig fig except 1, eg 0.047	
	OR M1 ÷ 32		
	M3 Δ <i>H</i> = 18900 ÷ M2 OR 403 200 (J/mol)	ACCEPT M2 from (b)(i) ÷ M2 from (b)(ii) ACCEPT any number of sig fig	
	M4 Δ <i>H</i> = -400 (kJ/mol)	ACCEPT any number of sig fig, eg 403, 403.2	
		Negative sign must be included	
		(+) 400/403/403.2 etc scores 3	
		Mark CSQ throughout	
		Correct final answer with no working scores 4	

Alternative Method

(b)(ii)	М1	mass[CH₃OH] = 84.7 – 83.2 OR 1.5 (g)		4
	М2	18900 ÷ 1.5 OR 12600 OR 18900 ÷ M1	ACCEPT any number of sig fig except 1, eg 0.047	
	МЗ	$\Delta H = 12600 \times 32$ OR 403 200 (J)		
	M4	$\Delta H = -400 \text{ (kJ/mol)}$	ACCEPT M2 from (b)(i) ÷ M2 from (b)(ii) ACCEPT any number of sig fig	
			ACCEPT any number of sig fig, eg 403, 403.2	
			Negative sign must be included	
			(+) 400/403/403.2 etc scores 3	
			Mark CSQ throughout	
			Correct final answer with no working scores 4	
(b)(iii)				

(b)(iii)	M1 oxygen/other reactant missing from methanol		2
	M2 product level / carbon dioxide and water above reactant level	ACCEPT product level should be below reactant level ACCEPT answers shown on diagram IGNORE references to activation energy IGNORE references to missing x- axis	

(c)	Rou	ite 1:		4
	М1	Σ(bonds broken) = (412 × 3) + 360 + 463 + (496 × 1.5)		
		OR 2803 (kJ/mol)		
	M2	Σ(bonds made)= (743 x 2) + (463 x 4)		
		OR 3338 (kJ/mol)	IGNORE negative sign	
	Rou	ite 2:		
	М1	Σ(bonds broken) = (412 × 3) + 360 + (496 × 1.5)		
		OR 2340 (kJ/mol)	ICNODE pegative sign	
	M2	Σ(bonds made) = (743 x 2) + (463 x 3)	IGNORE negative sign IGNORE sign	
		OR 2875 (kJ/mol)	Expected final answer is	
	МЗ	Correct calculation of difference between M1 and M2	Positive sign not	
	M4	If M2 > M1 final answer must be negative	If a clear statement is made that the reaction is exothermic, then sign	
		If M2 < M1 final answer must be positive	can be negative Correct final answer with no working scores 4	
			Total	15

Q3.

Question number	Answer	Notes	Marks
а	18.7	Give 1 mark for 18.7 and 27.2 wrong way around	1
	27.2		1
	M2-M1/(+)8.5		1
b i	1450 ÷ 24000		1
	0.0604(16)	Accept minimum of 2 dp	1
		Award 1 mark for a correct answer using a volume from either experiment 2 or 3	
ii	29.2 ÷ M2 from (b)(i) / 29.2 ÷ 0.0604(16)	Accept 29200 ÷ 0.0604	1
	(-)483(.315678)	Final answer in joules scores 1/2	1
iii	200 × 4.2 × 41.2		1
	(-)34608	Accept minimum of 2 sf	1
		Award 1 mark for a correct calculation using 1875 for the volume of water.	
iv	cross in box \mathbf{B} (not all of the heat energy is transferred to the water)		1

c i	(4 × C-H) + (2 × 0=0)	Accept (4 × 412) + (2 × 496) / 1648 + 992	1
	2640	Deduct 1 mark for each mistake Ignore sign	1
		-g	
ii	(2 × C=O) + (4 × H-O)	Accept (2 × 743) + (4 × 463) / 1486 + 1852	1
	3338	Deduct 1 mark for each mistake Ignore sign	1
	(00 (1-1/1))	000	
	אפט (גז/moi)	to (c)(i) and (c)(ii)	1