Questions

Q1.

A student investigated the neutralisation of acids by measuring the temperature changes when alkalis were added to acids of known concentrations.

He used this apparatus to add different volumes of sodium hydroxide solution to a fixed volume of dilute nitric acid.

He used this method.

- measure the temperature of $25.0 \mathrm{~cm}^{3}$ of the acid in the polystyrene cup
- add the sodium hydroxide solution in $5.0 \mathrm{~cm}^{3}$ portions until a total of $30.0 \mathrm{~cm}^{3}$ has been added
(a) State two properties of the sodium hydroxide solution that should be kept constant for each $5.0 \mathrm{~cm}^{3}$ portion.

1 \qquad
\qquad
2 \qquad
\qquad
(b) The diagram shows the thermometer readings in one experiment.

Write down the thermometer readings and calculate the temperature change.
temperature after adding alkali \qquad .${ }^{\circ} \mathrm{C}$
temperature before adding alkali \qquad ${ }^{\circ} \mathrm{C}$ temperature change ${ }^{\circ} \mathrm{C}$
(c) The student carried out the experiment three times.

The table shows his results.

Volume of alkali added in $\mathbf{c m}^{3}$	Temperature in $^{\circ} \mathrm{C}$		
	experiment 1	experiment 2	experiment 3
0.0	17.4	16.6	15.9
5.0	18.5	21.0	18.0
10.0	19.6	24.5	20.0
15.0	20.5	23.6	22.2
20.0	21.4	22.7	23.6
25.0	22.5	21.4	22.8
30.0	23.4	20.5	22.0

The teacher said that only the results for experiment 3 showed the expected increase and decrease in temperature.
(i) Why was there no temperature decrease in experiment 1?

- A The alkali was added too quicklyB The starting temperature of the acid was too high
- C The acid concentration was half what it should have been

■ D The volume of acid used was $50.0 \mathrm{~cm}^{3}$ instead of $25.0 \mathrm{~cm}^{3}$
(ii) Why were the temperature increases in experiment 2 much greater than expected?

- A The starting temperature of the acid was too high
- B The acid concentration was double what it should have been
- C The volume of acid used was $50.0 \mathrm{~cm}^{3}$ instead of $25.0 \mathrm{~cm}^{3}$
- D The alkali was added in $10.0 \mathrm{~cm}^{3}$ portions but were recorded as $5.0 \mathrm{~cm}^{3}$ portions
(d) Plot the results of experiment 3 on the grid.

Draw a straight line of best fit through the first four points, and another straight line of best fit through the last three points. Make sure that the two lines cross.

(e) The point where the lines cross indicates the volume of alkali added to exactly neutralise the acid and also the maximum temperature reached.

Record these values.
volume of alkali cm^{3}
maximum temperature.. ${ }^{\circ} \mathrm{C}$
(f) Another student used sulfuric acid instead of nitric acid in her experiments. She started with $25.0 \mathrm{~cm}^{3}$ of sulfuric acid of concentration $0.650 \mathrm{~mol} / \mathrm{dm}^{3}$.

She added $0.500 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide solution until the acid was completely neutralised.

The equation for this reaction is

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

(i) Calculate the amount, in moles, of sulfuric acid used.
(ii) Calculate the amount, in moles, of sodium hydroxide needed to neutralise this amount of sulfuric acid.
amount =
(iii) Calculate the volume, in cm^{3}, of sodium hydroxide solution needed to neutralise this amount of sulfuric acid.

Q2.

A student uses this apparatus to find the increase in temperature of water when methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is burned.

(a) There are several reasons why the increase in temperature is less than expected.
(i) One reason is the incomplete combustion of methanol to form only carbon monoxide and water. Write the chemical equation for this incomplete combustion.
(ii) State another reason why the increase in temperature is less than expected.
(b) The student records these results.

mass of burner and methanol before combustion	84.7 g
mass of burner and methanol after combustion	83.2 g
mass of water	125 g
temperature of water at start	$22^{\circ} \mathrm{C}$
temperature of water at end	$58^{\circ} \mathrm{C}$

(i) Calculate the heat energy change (Q), in joules, in this experiment using the expression

$$
Q=m \times 4.2 \times \Delta T
$$

where m is the mass of water in grams and ΔT represents the increase in temperature.
$Q=$
(ii) The relative molecular mass of methanol is 32

Use this information and your value for Q to calculate the molar enthalpy change, ΔH, for the combustion of methanol.
Give your answer in $\mathrm{kJ} / \mathrm{mol}$.

$$
\Delta H=
$$

\qquad
(iii) The student draws an energy level diagram for the complete combustion of methanol.

Identify the two mistakes in his diagram.

1 \qquad
\qquad

2 \qquad
\qquad
(c) The student is given this table of average (mean) bond energies.

Bond	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{O}-\mathrm{H}$	$\mathrm{O}=\mathrm{O}$	$\mathrm{C}=\mathrm{O}$
Average bond energy in $\mathrm{kJ} / \mathrm{mol}$	412	360	463	496	743

The equation for the complete combustion of methanol is

Use this equation and the information in the table to calculate another value for the molar enthalpy change, ΔH, for the combustion of methanol.

Q3.

A student does some experiments to find the heat energy released when natural gas burns.
She uses this apparatus.

(a) The diagram shows the thermometer readings in one of her experiments.

Use these readings to complete the table, entering all values to the nearest $0.1^{\circ} \mathrm{C}$.

temperature of water at start in ${ }^{\circ} \mathrm{C}$	
temperature of water at end in ${ }^{\circ} \mathrm{C}$	
temperature change in ${ }^{\circ} \mathrm{C}$	

(b) The student repeats the experiment three times.

The table shows her results.

Experiment	Volume of gas burned in $\mathbf{c m}^{3}$	Temperature rise of water in ${ }^{\circ} \mathrm{C}$
1	1450	34.8
2	1875	41.2
3	1620	37.7

(i) Calculate the amount, in moles, at room temperature and pressure, of methane burned in experiment 1.
Assume that natural gas contains only methane.
amount =
\qquad mol
(ii) The quantity of heat energy released in experiment 1 is 29200 J . Calculate the molar enthalpy change, in $\mathrm{kJ} / \mathrm{mol}$, for the combustion of methane.
(iii) The temperature rise in experiment 2 is $41.2^{\circ} \mathrm{C}$.

Calculate the heat energy change in experiment 2 using the expression
heat energy change $=$ volume of water $\times 4.2 \times$ temperature change

$$
\text { (in J) } \quad\left(\text { in } \mathrm{cm}^{3}\right) \quad\left(\text { in }{ }^{\circ} \mathrm{C}\right)
$$

heat energy change = \qquad J
(iv) The student uses the results from experiment 3 to calculate the molar enthalpy change, in $\mathrm{kJ} / \mathrm{mol}$, for the combustion of methane.

She compares her value with the value in a data book.

student's value	$\Delta H=-510 \mathrm{~kJ} / \mathrm{mol}$
data book value	$\Delta H=-890 \mathrm{~kJ} / \mathrm{mol}$

Which is the best explanation for the large difference between these two values?
\square A natural gas contains other gases that release heat energy when burnedB not all of the heat energy is transferred to the water
C some of the water evaporates during the experiment
D the student measures the gas by volume instead of by mass
(c) The student uses a table of average bond energies to calculate another value for the molar enthalpy of combustion of methane.

Bond	$\mathrm{C}-\mathrm{H}$	$\mathrm{O}=\mathrm{O}$	$\mathrm{C}=\mathrm{O}$	$\mathrm{H}-\mathrm{O}$
Average bond energy in $\mathrm{kJ} / \mathrm{mol}$	412	496	743	463

The equation for the combustion can be shown using displayed formulae.

(i) Use values from the table to calculate the energy taken in when the bonds in the reactants are broken.
energy taken in =
(ii) Use values from the table to calculate the energy given out when the bonds in the products are formed.
(iii) Use your answers to (i) and (ii) to calculate the molar enthalpy change for the combustion of methane.

Mark Scheme

Q1.

Question number			Answer	Notes	Marks
a		M1	concentration	Ignore from the same bottle	1
		M2	temperature / same temperature as acid		1
				Accept in either order Ignore references to volume	
b		M1	19.4	Award 1 for both temperatures	1
		M2	16.9	correct but in wrong order	1
		M3	(+)2.5	CQ on temperatures recorded Penalise negative sign	1
c	i		cross in box D used was cm^{3} instead of 25.0 $\mathrm{~cm}^{3}$)\quad (The volume of acid50.0		1
	ii		cross in boxD (The alkali was added in $10.0 \mathrm{~cm}^{3}$ portions but were recorded as $5.0 \mathrm{~cm}^{3}$ portions)		1
d		M1		Deduct 1 for each error	
		M2	gridline	If points not visible beneath line, assume them to be on the line	2
		M3	Straight line of best fit through first 4 points	Lines must be drawn with a ruler	1
		M4	$\frac{\text { straight line of best fit through last } 3}{\text { points }}$	Penalise freehand once only ECF on incorrectly plotted points	1
				If first line drawn to $(23.6,20.0)$, do not award M3 If lines do not cross or are joined by curve or straight line, only one of M3 and M4 can be awarded	
e		M1	volume of alkali CQ on where lines cross	Accept answer to nearest gridline to $\min 1 \mathrm{dp}$	1
		M2	maximum temperature CQon where lines cross	Accept answer to nearest gridline to $\min 1 \mathrm{dp}$	1
				Penalise missing dp once only If both values correct but in wrong order, award $1 / 2$ $0 / 2$ if lines do not cross	
f	i	M1	0.650×0.025		1
		M2	$0.01625 / 0.0163$	16.25 scores $1 / 2$ Accept 0.016 and 0.0162	1
	ii	M1	0.0325	CQ onfi	1
	iii	M1	$\frac{0.0325 \times 1000}{0.500}$	CQonfii	1
		M2	$65\left(\mathrm{~cm}^{3}\right)$	If M1 wrong because $\times 1000$ missing, then award M2 by ECF	1
				Penalise failure to use 1000 once only in i and iii Do not penalise rounding of intermediate answers and consequent final answer eg 65.2	
				If final answer obtained by use of $\frac{v_{1} M_{1}}{n_{1}}=\frac{v_{2} M_{2}}{n_{2}}$ both marks may be awarded in iii	
TOT					18

Q2.

Question number	Answer	Notes	Marks
(a)(i)	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathbf{M 1}$ all formulae correct M2 correctly balanced	ACCEPT multiples and fractions	2
(ii)	M2 DEP on M1 thermal energy/heat (energy) lost to the surroundings/environment	ACCEPT lost to atmosphere/beaker/thermometer ACCEPT evaporation of water/methanol	1

(b)(i)	$\begin{aligned} & \text { M1 }(Q=) 125 \times 4.2 \times 36 \\ & \text { M2 }=18900(\mathrm{~J}) / 19000(\mathrm{~J}) \end{aligned}$	ACCEPT answer in kJ if unit included Correct final answer with no working scores 2 ALLOW one mark for $1.5 \times 4.2 \times 36$ $=226.8$ ALLOW one mark for $126.5 \times 4.2 \times$ $36=19126.8$	2
(ii)	M1 mass $\left[\mathrm{CH}_{3} \mathrm{OH}\right]=84.7$ 83.2 OR 1.5 (g)		4
	$\begin{gathered} \text { M2 } n\left[\mathrm{CH}_{3} \mathrm{OH}\right]=1.5 \div 32 \text { OR } \\ 0.046875(\mathrm{~mol}) \\ \text { OR M1 } \div 32 \end{gathered}$	ACCEPT any number of sig fig except 1 , eg 0.047	
	$\text { M3 } \begin{gathered} \Delta H=18900 \\ 200(\mathrm{~J} / \mathrm{mol}) \end{gathered}$	ACCEPT M2 from (b)(i) \div M2 from (b)(ii) ACCEPT any number of sig fig	
	M4 $\Delta H=-400(\mathrm{~kJ} / \mathrm{mol})$	ACCEPT any number of sig fig, eg 403, 403.2	
		Negative sign must be included (+) 400/403/403.2 etc scores 3	
		Mark CSQ throughout	
		Correct final answer with no working scores 4	

Alternative Method

(b)(ii)	```M1 mass \(\left[\mathrm{CH}_{3} \mathrm{OH}\right]=84.7\) - 83.2 OR 1.5 (g) M2 \(18900 \div 1.5\) OR 12600 OR \(18900 \div\) M1 M3 \(\Delta H=12600 \times 32\) OR 403200 (J) M4 \(\Delta H=-400(\mathrm{~kJ} / \mathrm{mol})\)```	ACCEPT any number of sig fig except 1 , eg 0.047 ACCEPT M2 from (b)(i) \div M2 from (b)(ii) ACCEPT any number of sig fig ACCEPT any number of sig fig, eg 403, 403.2 Negative sign must be included (+) 400/403/403.2 etc scores 3 Mark CSQ throughout Correct final answer with no working scores 4	4

| (b)(iii) | M1oxygen/other reactant
 missing from methanol
 M2product level / carbon
 dioxide and water above
 reactant levelACCEPT product level should be
 below reactant level
 ACCEPT answers shown on diagram
 IGNORE references to activation
 energy
 IGNORE references to missing $x-$
 axis | |
| :---: | :---: | :--- | :---: |

(c)	Route 1: M1 \sum (bonds broken) $=(412 \times 3)+360+$ $463+(496 \times 1.5)$ OR 2803 ($\mathrm{kJ} / \mathrm{mol}$) M2 Σ (bonds made) $=(743 \times 2)+$ (463×4) OR 3338 ($\mathrm{kJ} / \mathrm{mol}$) Route 2: M1 Σ (bonds broken) $=(412 \times 3)+360+$ (496 $\times 1.5$) OR 2340 ($\mathrm{kJ} / \mathrm{mol}$) M2 \sum (bonds made) $=(743 \times 2)+$ (463×3) OR 2875 ($\mathrm{kJ} / \mathrm{mol}$) M3 Correct calculation of difference between M1 and M2 M4 If M2 > M1 final answer must be negative If M2 < M1 final answer must be positive	IGNORE negative sign IGNORE negative sign IGNORE sign Expected final answer is -535 Positive sign not required If a clear statement is made that the reaction is exothermic, then sign can be negative Correct final answer with no working scores 4	4
		Total	15

Q3.

Question number	Answer	Notes	Marks
a	$\begin{aligned} & 18.7 \\ & \\ & 27.2 \\ & \text { M2-M1 / (+)8.5 } \end{aligned}$	Give 1 mark for 18.7 and 27.2 wrong way around	1 1 1
b i	$\begin{aligned} & 1450 \div 24000 \\ & 0.0604(16) \end{aligned}$	Accept minimum of 2 dp Award 1 mark for a correct answer using a volume from either experiment 2 or 3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
ii	$\begin{aligned} & 29.2 \div \text { M2 from }(\mathrm{b})(\mathrm{i}) / 29.2 \div \\ & 0.0604(16) \\ & (-) 483(.315678) \end{aligned}$	$\begin{aligned} & \text { Accept } 29200 \div \\ & 0.0604 \end{aligned}$ Final answer in joules scores $1 / 2$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
iii	$\begin{aligned} & 200 \times 4.2 \times 41.2 \\ & (-) 34608 \end{aligned}$	Accept minimum of 2 sf Award 1 mark for a correct calculation using 1875 for the volume of water.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
iv	cross in box \mathbf{B} (not all of the heat energy is transferred to the water)		1

c i	$\begin{aligned} & (4 \times \mathrm{C}-\mathrm{H})+(2 \times \mathrm{O}=\mathrm{O}) \\ & 2640 \end{aligned}$	$\begin{aligned} & \text { Accept }(4 \times 412)+ \\ & (2 \times 496) / 1648+ \\ & 992 \end{aligned}$ Deduct 1 mark for each mistake Ignore sign	1 1
ii	$\begin{aligned} & (2 \times \mathrm{C}=\mathrm{O})+(4 \times \mathrm{H}-\mathrm{O}) \\ & 3338 \end{aligned}$	$\begin{aligned} & \text { Accept }(2 \times 743)+ \\ & (4 \times 463) / 1486+ \\ & 1852 \end{aligned}$ Deduct 1 mark for each mistake Ignore sign	1 1
iii	-698(kJ/mol)	CSQ on answers given to (c)(i) and (c)(ii)	1

